Linking axonal degeneration to microtubule remodeling by Spastin-mediated microtubule severing
نویسندگان
چکیده
Mutations in the AAA adenosine triphosphatase (ATPase) Spastin (SPG4) cause an autosomal dominant form of hereditary spastic paraplegia, which is a retrograde axonopathy primarily characterized pathologically by the degeneration of long spinal neurons in the corticospinal tracts and the dorsal columns. Using recombinant Spastin, we find that six mutant forms of Spastin, including three disease-associated forms, are severely impaired in ATPase activity. In contrast to a mutation designed to prevent adenosine triphosphate (ATP) binding, an ATP hydrolysis-deficient Spastin mutant predicted to remain kinetically trapped on target proteins decorates microtubules in transfected cells. Analysis of disease-associated missense mutations shows that some more closely resemble the canonical hydrolysis mutant, whereas others resemble the ATP-binding mutant. Using real-time imaging, we show that Spastin severs microtubules when added to permeabilized, cytosol-depleted cells stably expressing GFP-tubulin. Using purified components, we also show that Spastin interacts directly with microtubules and is sufficient for severing. These studies suggest that defects in microtubule severing are a cause of axonal degeneration in human disease.
منابع مشابه
Branch-Specific Microtubule Destabilization Mediates Axon Branch Loss during Neuromuscular Synapse Elimination
Developmental axon remodeling is characterized by the selective removal of branches from axon arbors. The mechanisms that underlie such branch loss are largely unknown. Additionally, how neuronal resources are specifically assigned to the branches of remodeling arbors is not understood. Here we show that axon branch loss at the developing mouse neuromuscular junction is mediated by branch-speci...
متن کاملHereditary spastic paraplegia SPG4: what is known and not known about the disease.
Mutations in more than 70 distinct loci and more than 50 mutated gene products have been identified in patients with hereditary spastic paraplegias, a diverse group of neurological disorders characterized predominantly, but not exclusively, by progressive lower limb spasticity and weakness resulting from distal degeneration of corticospinal tract axons. Mutations in the SPAST (previously known ...
متن کاملThe microtubule-severing proteins spastin and katanin participate differently in the formation of axonal branches.
Neurons express two different microtubule-severing proteins, namely P60-katanin and spastin. Here, we performed studies on cultured neurons to ascertain whether these two proteins participate differently in axonal branch formation. P60-katanin is more highly expressed in the neuron, but spastin is more concentrated at sites of branch formation. Overexpression of spastin dramatically enhances th...
متن کاملMicrotubule-targeting drugs rescue axonal swellings in cortical neurons from spastin knockout mice
Mutations in SPG4, encoding the microtubule-severing protein spastin, are responsible for the most frequent form of hereditary spastic paraplegia (HSP), a heterogeneous group of genetic diseases characterized by degeneration of the corticospinal tracts. We previously reported that mice harboring a deletion in Spg4, generating a premature stop codon, develop progressive axonal degeneration chara...
متن کاملCut Your Losses: Spastin Mediates Branch-Specific Axon Loss
In this issue of Neuron, Brill et al. (2016) demonstrate that, during synapse elimination in the developing neuromuscular junction, branch-specific microtubule destabilization results in arrested axonal transport and induces axon branch loss. This process is mediated in part by the neurodegeneration-associated, microtubule-severing protein spastin.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 168 شماره
صفحات -
تاریخ انتشار 2005